
Troubleshooting an Intrusion Detection Dataset:
the CICIDS2017 Case Study

Gints Engelen, Vera Rimmer, and Wouter Joosen
imec-DistriNet, KU Leuven

Leuven, Belgium
Email:{firstname.lastname}@kuleuven.be

Abstract—Numerous studies have demonstrated the effective-
ness of machine learning techniques in application to network
intrusion detection. And yet, the adoption of machine learning
for securing large-scale network environments remains chal-
lenging. The community acknowledges that network security
presents unique challenges for machine learning, and the lack
of training data representative of modern traffic remains one
of the most intractable issues. New attempts are continuously
made to develop high quality benchmark datasets and proper
data collection methodologies. The CICIDS2017 dataset is one
of the recent results, created to meet the demanding criterion of
representativeness for network intrusion detection.

In this paper we revisit CICIDS2017 and its data collection
pipeline and analyze correctness, validity and overall utility of
the dataset for the learning task. During this in-depth analysis,
we uncover a series of problems with traffic generation, flow
construction, feature extraction and labelling that severely affect
the aforementioned properties. We investigate the causes of these
shortcomings and address most of them by applying an improved
data processing methodology. As a result, more than 20 percent
of original traffic traces are reconstructed or relabelled. Machine
learning benchmarks on the final dataset demonstrate significant
improvements. Our study exemplifies how data collection issues
may have enormous impact on model evaluation and provides
recommendations for their anticipation and prevention.

Index Terms—network intrusion detection, machine learning,
benchmark dataset, data collection.

I. INTRODUCTION

Network intrusion detection systems (NIDS) are security
tools strategically deployed in a network environment that
monitor and interpret internal and external traffic in search
for malicious activities. Advances in Machine Learning (ML)
over the last decades have enabled NIDS to evolve from simple
rule-based systems to intelligent automated decision-making
engines powered by modern learning algorithms [1]. Despite
significant progress in ML-based defensive research, a lot of
challenges are still open when it comes to NIDS solutions. For
any data-driven technique, the role of high quality, representa-
tive datasets cannot be underestimated; this is especially true
for NIDS research that has to account for high non-stationarity
and strong heterogeneity of network traffic, together with an
uncontrollable production environment.

In NIDS research, evaluation on benchmark datasets pri-
marily serves a two-fold purpose: (i) real-world performance
estimation of a particular algorithm, and (ii) consistent com-
parison between different approaches. In this respect, quality
of data has a decisive influence on valid outcomes of both

objectives. Research has shown that many benchmark datasets
do not adequately represent the real problem of network in-
trusion detection, discrediting performance numbers achieved
in laboratory conditions [1]. As a response, over the last 10
years the community has collectively devised the criteria that
reliable research traffic data should meet [2]–[4]. These criteria
can be seen as objectives of proper dataset generation, be that
for capturing real traffic or simulating attack scenarios.

Recently, the Canadian Institute of Cybersecurity released
a new dataset – CICIDS2017 [5] – with the aim to address
some of the issues that plagued older datasets. CICIDS2017 is
comprised of real traffic generated through simulated interac-
tions between hosts in a controlled infrastructure, which means
that the resulting network traffic retains basic limitations of a
simulated environment. Nevertheless, the authors do a great
effort to achieve heterogeneity, diversity and completeness
of the dataset in order to maximize its utility for research
purposes. Owing to that promise, CICIDS2017 is growing
in usage in NIDS research [6]–[9]. Crucially, however, the
dataset is largely taken at its face value, assuming that a
modern dataset collected with the quality requirements in
mind indeed satisfies these criteria. As a result, the studies
use successful ML evaluations as a sole confirmation of
correctness of CICIDS2017, but do not explicitly validate these
results by examining the data. The lack of dedicated analysis
sheds uncertainty on the empirical and theoretical research
results obtained when leveraging the dataset. We have revisited
the properties of CICIDS2017 as a NIDS dataset and analyse
to what extent it satisfies the declared requirements.

Our contributions can be summarized as follows:
• We perform a thorough methodological manual analysis

of the raw CICIDS2017 dataset and its respective feature
extraction tool in order to review the dataset creation
pipeline, consisting of attack simulation, flow construc-
tion, labelling, feature extraction and ML benchmarking.
Our investigation reveals errors in attack simulation,
feature extraction, labelling and benchmarking of the
dataset. Moreover, we find out that more than 25% of all
flows in the dataset turn out to be meaningless artefacts
carrying no real identifying characteristics. For several
attack categories, their fraction reaches 50%, which is
significantly beyond an acceptable noise level. Further
investigation confirms that the issue is still present in the
newest version of the dataset - CIC-CSE-DS2018.



• We analyse the negative impact of the dataset errors,
artefacts and mislabelled traces on ML algorithms, and
provide insights into why these issues can easily pass
undetected when using the dataset for NIDS research.

• Building on these findings, we modify the feature extrac-
tor and regenerate and relabel the CICIDS2017 dataset
based on the original PCAPs1. Improved correctness and
reliability of the regenerated dataset are further supported
by ML benchmarks that reach the highest performance
ever reported on these data.

II. DATASET & RELATED WORK

A NIDS dataset is considered reliable when it covers the
following properties. It should contain (a) real and (b) valid
network traffic, such that it constitutes complete scenarios that
can be observed in actual production environments. The benign
and malicious traces should be (c) correctly labelled, (d)
highly variant/diverse in terms of represented services, client
behaviours and attacks, (e) correctly implemented, according
to commonly accepted standards, and (f) easily updatable,
when new services and attacks are introduced. The dataset
should also be (g) reproducible, enabling comparison across
different datasets, and (h) shareable, containing no private
information. Finally, a good dataset should be supplied with
(i) documentation and metadata of data collection, including
details about the network infrastructure and simulated attack
scenarios. CICIDS2017 was created as a response to these
dataset quality evaluation criteria, and thus is asserted to
satisfy all of them by design.

The dataset is generated in a complete network topology
with diverse devices and operating systems as a testbed, where
separate victim and attacker networks communicate over the
Internet. To collect benign traffic that models realistic user
behaviour, the authors use profiling agents [11] that are trained
beforehand on network events generated through genuine
human interactions in the network. Communication covers all
common available protocols, such as HTTP, HTTPS, FTP,
SSH and email protocols. In order to fulfil the requirement
for attack diversity, the authors use the 2016 McAfee report to
compose the list of most common attacks: Brute Force attacks,
Heartbleed attack, Botnet communication, several variants of
DoS attacks, DDoS, Infiltration attack and Web attacks. In
total, the dataset comprises over 2.8 million traffic traces
categorized into 15 classes. Individual traffic traces are repre-
sented by a feature vector of 80 extracted high-level statistical
features, manually engineered based on expert knowledge of
traffic characteristics relevant to intrusion detection.

Since 2017, plenty of studies have deployed CICIDS2017
(and its latest version CSE-CIC-IDS2018) for NIDS re-
search [6]–[9]. The studied research problems span ML-
assisted network intrusion detection, novelty detection,
anomaly detection, online detection, with a large variety of
learning algorithms and traffic representations – raw PCAPs,

1The regenerated dataset and modified feature extractor can be found at
downloads.distrinet-research.be/WTMC2021 [10], where we also provide a
more low-level documentation of all our changes.

statistical features, graphs, etc. Recently, both datasets started
being considered for adversarial ML research, such as evasion
of botnet detection [12]. The conclusions reached by these
studies largely rely on correctness and validity of the dataset
in all its forms. There are studies that have analyzed features
used in the dataset [13] and raised the issue of class imbal-
ance [14]. However, these analyses do not address correctness
and validity of the dataset – the properties that are strongly
required to support any research results obtained from the data.

III. MANUAL ANALYSIS AND CORRECTIONS

We select CICIDS2017 for in-depth analysis based not
only on its growing adoption in the literature, but also on
sufficient transparency and reproducibility of its generation
process. This section describes the main analysis of the dataset
and its feature extraction tool. Our goal here is to revise the
aforementioned properties of a good NIDS dataset, which we
do through examining the following dataset creation stages:

• Attack simulation. Most research datasets for NIDS con-
tain malicious traces representative of target malicious
activities. To include a wide variety of attacks, and save
the effort of annotating real traffic, the attacks are often
simulated with open source tools or custom scripts.

• Flow construction. Raw network traffic is a continuous
data stream that needs to be monitored and analyzed in
real time. It is therefore necessary to decide what the
level of granularity will be, i.e. what constitutes a single
input unit for the detection system. Traffic is commonly
processed at granularity of a flow associated with one
complete network connection.

• Labelling. When working with a supervised detection
system, the aim is not only to distinguish between be-
nign and malicious traffic, but to label malicious traffic
according to the attack class that it belongs to. When
training an ML-based classifier for this purpose, it needs
to be supplied with example network data from all classes
that it needs to be able to detect, along with the correct
label for each input. When testing the model, comparing
correct labels with predicted classes allows to assess the
model’s performance.

• Feature extraction. Traditional ML systems cannot op-
erate on multidimensional raw traffic data, and instead
require some form of structured input. Therefore, a flow-
based intrusion detection system would convert each
raw traffic flow to a fixed-length structured vector that
encapsulates all the important information about the flow
in a form of numerical and/or categorical features. For
instance, a NIDS could extract statistical features of the
flow, such as total flow duration, total forward pack-
ets, average inter-packet arrival time, maximum packet
length, and others.

• ML benchmarks. Since the dataset is meant for design
and optimization of data-driven network security solu-
tions, the final stage of its creation is performing ML
benchmarks. Benchmarking includes designing, training
and testing one or more ML models on the constructed



dataset for a lab evaluation of network intrusion detection.
This stage is meant to confirm that the dataset and its
features are meaningful and appropriate for ML-based
NIDS, and optionally to compare performance of various
algorithms.

Understanding the underlying mechanisms of dataset gen-
eration enables researchers and practitioners to properly as-
sess relevance of the data to the problem at hand, foresee
potential pitfalls of applying ML to these data, and essentially
set correct expectations. Dataset documentation is crucial in
facilitating this analysis, and in case of CICIDS2017 we use
several sources of documentation: (i) the original paper [5], (ii)
the website page describing the dataset and its features [15],
and (iii) the github page of the feature extraction tool [16].
In the following, we describe our analysis process for each
dataset generation stage of interest, in the order applied during
our study, and report our findings.

A. Flow construction

CICIDS2017 flows are constructed from raw PCAP files
using the CICFlowMeter tool [16] by the same authors, which
outputs CSV files where each row corresponds to a flow,
and each flow has 83 (excluding the label) features. They
define a flow as a bidirectional exchange of network packets
belonging to the same 5-tuple – a unique set {source IP ad-
dress, destination IP address, source port, destination port,
transport layer protocol} – within a certain time period.

1) TCP “appendices”. We analyze the source code of
CICFlowMeter to understand how each flow is recorded. A
flow is started upon observing a packet that does not belong
to an active flow. A flow is terminated either upon timing out,
or when the network connection is closed. In this dataset the
timeout value was set to 120 seconds. When the underlying
network protocol is TCP, CICFlowMeter also considers the
network connection closed (and the corresponding flow com-
pleted) upon detecting the first packet in the flow that contains
a FIN flag. We notice that this design decision violates the
TCP specification [17] that stipulates that a FIN flag merely
indicates that the sender is done transmitting data. A TCP
connection, however, is only terminated when both sides have
sent a FIN packet to each other.

The result of the misunderstanding of the TCP mechanism
has rather drastic consequences: if a flow is considered ter-
minated already after the first of the actual two FIN packets,
any subsequent packets belonging to the same TCP connection
will constitute their own flow. These flows mostly consist of
just two leftover ACK and FIN packets and are labelled as the
original flow, be that benign or an attack. We will henceforth
refer to these flows as “TCP appendices”, since they constitute
the (superfluous) end of the underlying TCP connection. In
Section IV we show that the TCP appendices are alarmingly
present, making up 25.9 percent of the entire dataset and study
their impact.

2) Timeout and TCP appendices. After a flow times out, a
subsequent flow with the same 5-tuple maintains the source
and destination of the timed out flow, which guarantees

consistency across multiple flows spanning a single (long)
TCP connection. There is however a complex problem in this
dataset where a TCP appendix timing out can sometimes cause
the subsequent flow to go in the wrong direction (that is, the
Source and Destination features of the flow are swapped). A
detailed description of this phenomenon is however out of
scope for this work, and we once again refer the interested
reader to our detailed documentation [10].

As we will see in section III-B, the labelling logic used in
this dataset relies on correct flow direction to assign its labels.
Consequently, when attack flows go in the wrong direction,
they risk being mislabelled as benign.

3) Ignoring RST. According to the specification [17], the
RST packet is used to reset a TCP connection. We observe,
however, that the CICFlowMeter tool does not consider the
RST packet as a valid way to terminate a TCP flow.

B. Labelling

The authors provide information about the IP addresses
of attackers and victims as well as the time window during
which each attack was executed, which should allow for
reproducibility of the labelling logic.

1) Time frames. We found that the time frames reported on
the dataset information page [15] are not precise, therefore we
had to tune them to reproduce the labelling. We report these
details along with the new version of the dataset [10].

2) Attempted attack flows. A crucial observation is that the
employed labelling strategy relies solely on a flow’s source
and destination IP and a specific data collection window, and
thus labels a traffic flow between an attacker and a victim as
malicious simply on the grounds of being collected at a certain
moment in time. Consequently, a resulting flow’s content and
characteristics are not verified to ensure that malicious or
suspicious activity is taking place.

We found at least one potential issue with that, which affects
most attack classes. All attacks, except for PortScan, rely on
an established TCP connection in order to deploy malicious
functionality. Within this established TCP connection, there
needs to be some kind of communication in the form of a
payload for the attack to take place.

However, we observe that Web Attack - Brute Force and Web
Attack - XSS largely consist of flows that have no data transfer
in the forward direction, which means that the attacker never
actually executes an attack within those flows. Bot traffic also
contains a large number of failed or empty TCP connections,
which do not contain meaningful botnet traffic and thus should
not be labelled as such. Moreover, when a DoS attack brings
a web server down, making it unable to properly respond
to new incoming connection requests, these numerous TCP
connections without a HTTP payload are still labelled as an
instance of a HTTP-based DoS attack.

We conclude that labelling these examples as attacks is in-
appropriate for the type of a flow-based NIDS which analyzes
each flow in isolation from another and cannot judge whether
an observed failed or empty TCP connection is a part of
a larger ongoing malicious campaign. That is, CICIDS2017



flows that are generated by a connection initiated by an
attack simulation tool but do not contain any forward data
transfer should be distinguished from self-contained malicious
connections. We thus decide to label these flows as ‘X -
Attempted’, where X refers to the original attack label (IV-B).

C. Attack simulation

Most attacks are generated by executing an automated tool
from one or more hosts in the attacker network, while other
attacks are executed by Python scripts written by the authors.
Some attack categories (such as Bot, Infiltration) assume that
the victim host is compromised, after which the victim will
be initiating connections with the attacker.

1) DoS Hulk misimplementation. Our analysis reveals that
the DoS Hulk tool used in this dataset simulation is deprecated
and should not be used to execute a DoS attack. The DoS Hulk
tool aims to cause the target web-server to keep a connection
open during 110-120 seconds. However, instead of setting the
Connection header field in the HTTP request to Keep-Alive,
this implementation sets it to Close. As a result, the web server
sets the FIN flag on the outgoing HTTP response packet,
initiating to close the connection. As this renders the DoS
Hulk attack ineffective, we do not believe this attack class in
CICIDS2017 can be used as intended.

2) Diversity. The authors of the dataset ensure diversity
in benign behaviour and include a wide range of attacks.
However, diversity of data within each attack category is not
openly discussed. We are not aware whether the attack tools
were used with a certain fixed configuration or with varying
parameters, which affects how representative each attack class
is of the overall attack strategy. A supervised NIDS trained
on attack traces that were simulated using one configuration
of the attack tool may not generalize to other configurations,
making NIDS behaviour unpredictable on slightly differing
attack implementations.

For the sake of diversity within a single attack category, we
recommend combining several tools and their configurations
for attack simulation in future research.

D. Feature extraction

The dataset uses flow-level statistical features as a traf-
fic representation. These features are calculated in the CI-
CFlowMeter feature extraction tool.

Shortcut learning. The original CSV files still contain
attributes such as Flow ID, Source IP, Destination IP, Source
Port, Destination Port, and Timestamp of the flow. Whereas
using the destination port as a NIDS feature is up for debate,
the other attributes should be excluded from the feature
representation during training. This should prevent a flow-
based NIDS from associating a certain timestamp or some
host-specific information with a certain class without actually
learning the underlying problem.

This ties in to a larger problem in ML, where features
unrelated to the underlying problem happen to be the most
discerning between each class. This phenomenon is generally
referred to as shortcut learning. While reliable detection

of shortcut learning is still an open research problem, we
recommend analyzing the importance of various features used
in prediction as a sanity check for any feature-based classifier.

We evaluate the issue of shortcut learning at length within
the context of this dataset in Section IV.

E. ML benchmarks

The authors of CICIDS2017 evaluate standard ML classi-
fiers [5]: Random Forest (RF), Multi-Layer Perceptron (MLP),
K-Nearest Neighbors, etc. Apart from execution speed for
training and testing, they report aggregated performance met-
rics for the whole test set, based on the total number of true
positives (TP), false positives (FP) and false negatives (FN):
Precision: the ratio of correctly detected attacks to all traces
classified as malicious TP/(TP + FP );
Recall: the ratio of correctly detected attacks to all actually
malicious traces TP/(TP + FN);
F1-score: the harmonic mean of precision and recall.

We list a number of issues with the conducted benchmarks,
which affect reliability and reproducibility of reported perfor-
mance estimates. First, the lack of per-class performance mea-
surements, such as a confusion matrix or per-class F1-score,
does not allow to fully assess utility of CICIDS2017 for NIDS.
Providing only aggregated precision, recall and F1-score for
a given highly imbalanced dataset obscures effectiveness of
the ML algorithms for different attack classes. Our evaluation
shows that a ML-based NIDS fails on numerous flows of
some of the attacks, encouraging deeper investigation. We
provide revised ML benchmarks according to the suggested
methodology in the next section.

IV. EVALUATION

In this section we evaluate a Random Forest (RF) classifier
on the original and corrected datasets and analyze the differ-
ence. Through these benchmarks we also empirically inves-
tigate the impact of TCP appendices and mislabelled traces
on ML-based NIDS, and illustrate why it is so challenging to
detect such errors.

A. Regenerating the dataset

We analyze the impact of improvements suggested in Sec-
tion III by applying dataset transformations in three subsequent
stages. Table I reports on the number of traces per category
for each transformation step.

1) Original. We reconstruct the Original dataset with the
original CICFlowMeter tool and label it in such a way that it
matches the public dataset version as closely as possible.

2) Intermediate: fixing TCP-related issues. We correct flow
construction errors (III-A) by fixing CICFlowMeter so that the
TCP appendices are systematically reunited with the “head”
parts of the underlying TCP connections, while also making
sure that an RST packet correctly terminates a flow. Our goal
here is to have TCP flows accurately reflect their underlying
TCP connection. Subsequently, we see a sharp decrease in
flow counts across most classes in the second column of
Table I, where the biggest change happens in classes where



TABLE I: Structures of the three versions of the dataset (the
most prominent changes of flow counts in bold blue). *The
“attempted” category combines all Attempted attack flows.

Label Original Intermediate Final
(appendices fixed) (payload filter)

BENIGN 2271326 1823964 1823964
ATTEMPTED* 0 0 447362

FTP-Patator 7934 3984 3973
SSH-Patator 5898 2988 2980

DoS GoldenEye 10293 7647 7567
DoS Hulk 230124 159048 158469

DoS Slowhttptest 5499 5109 1742
DoS slowloris 5791 5707 4001

Heartbleed 11 11 11
Web Brute Force 1507 1365 151
Web Attack XSS 652 679 27
Web Attack SQL 21 12 12

Infiltration 36 48 32
Bot 1956 2208 738

PortScan 158842 159023 159023
DDoS 128022 95123 95123

TCP connections most often finish with FIN packets. In some
classes we also see an increase of the number of flows. This
happens on one hand due to the aforementioned RST packet
fix, as well as due to the issue described in section III-A2
which caused some malicious traces to be mislabelled as
benign, and which is resolved upon fixing the TCP appendices.
Note that we did not alter the original flow timeout value.

3) Final: payload filter. Following our conclusion in III-B2,
we apply the payload filter to all classes except for Benign and
PortScan. This filter ensures that attack classes predominantly
contain flows that actually exhibit malicious activity. We notice
sharp drops in several categories (Table I).

Web Attacks: Brute Force and XSS. Manual inspection of
these attacks showed that the large majority of their flows do
not contain any packet data. The attacks are largely executed
through a select few flows, which each of them containing
many brute force or XSS attempts.

Bot. Manual inspection showed that when the infected
victims attempt to connect to the Botnet master, they are
rejected in 2 out of 3 cases. These rejected connections carry
no meaningful malicious content, and were thus relabelled.

DoS: Slowhttptest and Slowloris. With both attacks, our
inspection reveals a large amount of failed TCP connections.
Unlike with Bot, this can be explained by the attack strategy
itself, which appears to have succeeded at bringing the victim
server down, at which point it is no longer able to respond to
incoming connection requests.

B. Experimental results

We perform ML benchmarks on the three dataset ver-
sions following the evaluation methodology introduced in
Section III-E and report results of RF – the classifier with
the best average F1-Score – in Table II. For these experiments
we decided to assign all “Attempted” flows to the BENIGN
category. We used a train-test split of 75-25. For the source
code, hyperparameter details and random seeds we refer the
reader to our extended documentation [10]. Note that results
of the analysis might differ based on the used ML model.

TABLE II: RF classifier performance metrics with the test set
ratio 25% (the most impacted attack classes in bold blue).
*Test sets of these classes are extremely small [10].

Original Intermediate Final
Label Pr Re F1 Pr Re F1 Pr Re F1

BENIGN 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
FTP-Patator 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
SSH-Patator 0.99 0.98 0.99 1.00 0.99 0.99 1.00 0.99 0.99

DoS GoldenEye 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
DoS Hulk 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99

DoS Slowhttptest 0.98 0.99 0.98 0.97 0.99 0.98 0.99 0.99 0.99
DoS slowloris 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99
Heartbleed* 1.00 0.67 0.77 1.00 0.67 0.78 1.00 0.89 0.93

Web Brute Force 0.70 0.85 0.77 0.69 0.91 0.78 1.00 0.91 0.95
Web Attack XSS* 0.52 0.11 0.18 0.52 0.16 0.25 1.00 0.67 0.79
Web Attack SQL* 0.33 0.07 0.11 0.00 0.00 0.00 0.00 0.00 0.00

Infiltration* 0.96 0.70 0.81 1.00 0.50 0.66 1.00 0.83 0.91
Bot 0.92 0.45 0.60 0.79 0.40 0.53 1.00 0.99 0.99

PortScan 0.99 0.99 0.99 0.96 0.97 0.97 0.96 0.97 0.97
DDoS 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Accuracy 0.99 0.99 0.99
Weighted Avg 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

While the aggregated performance metrics at the bottom
of Table II show no difference, the applied transformations
have significantly affected NIDS performance for various cat-
egories. This illustrates why analyzing the imbalanced dataset
at the level of aggregated ML metrics is inadequate.

1) TCP appendix impact. We see that removing appendices
marginally improves performance for some classes, but also
gives a performance decrease for other classes. Note that Web
Attack - SQL Injection ends up with 12 traces in total, and
all 3 test traces are mispredicted as Benign. This may be
due to the attack being hardly distinguishable from benign
traces and poorly represented in the training data. For other
classes where performance worsened, the appendices in the
Original dataset are more likely to be classified correctly
than normal attack flows. This points to the model overfitting
on the appendix instances, memorizing their features instead
of learning actual attack patterns. The model will be able
to overfit to such data only if (1) appendices of different
attack classes can be differentiated, and (2) appendices can be
distinguished from regular flows of the same class. To assess
whether these conditions hold, we apply extensive feature
importance measurements for the RF classifier, the details of
which can be found online [10].

TCP appendix features indeed have widely varying distribu-
tions across different classes, and most importantly, in all cases
these features do not have any semantic connection with the
intended malicious activity, but rather stem from the specifics
of the used attack tools. We find that the model overfits
through shortcut learning: it uses four prominent but largely
irrelevant features to crisply differentiate between appendices
of different classes (Fwd Header Len, Total Fwd Pkt, Min Seg
Size Fwd, and Init Win bytes Fwd), and mainly two features
(SYN Flag Count, Bwd Pkt Len Mean) to separate appendices
from regular flows.

2) Payload filter impact. The final transformation through
the targeted payload filter triggers a large change towards
much higher performance on Brute Force, XSS and Bot at-



tacks. This indicates that Bot flows without an established TCP
connection were a source of confusion for the RF classifier.
Our experiments revealed that the presence of RST packets
was a learned shortcut for Bot traffic in the Original dataset,
which means that the classifier learned to recognise failed TCP
connections instead of actual Botnet traffic. In the Final dataset
with near-perfect benchmark results the absence of RST was
an important Bot traffic feature.

We also see no significant change in performance for DoS
Slowhttptest, despite the large (almost 70%) decrease in total
number of flows. However, through additional feature impor-
tance analysis we see that the model starts to learn actually
relevant features, such as Inter-packet arrival time. Given that
a DoS Slowhttptest attack sends intermittent fragmented HTTP
packets, this feature is a strong indicator of this type of attack,
and is something a human operator would look for as well.

The experiments further confirm that aggregated ML metrics
computed on a largely imbalanced multi-class dataset are
inadequate to judge its utility for NIDS. Class-based metrics,
feature importance analysis and manual investigation of mis-
predictions are crucial in performance evaluation and will aid
in bringing attention to suspicious data points and spurious
correlations that would otherwise have gone unnoticed.

V. CONCLUSION

In this paper we revised the creation process of the widely
adopted CICIDS2017 dataset. Through analyzing traffic gen-
eration, attack simulation, flow construction, feature extrac-
tion, labeling and benchmarking stages of data collection,
we discovered a series of problems that violate some of
the established properties of a high quality NIDS dataset.
The misimplementation of the DoS Hulk attack, the misun-
derstanding of the TCP protocol in flow construction and
errors in feature extraction by the flawed CICFlowMeter tool
violate the requirement for correct implementation of network
traffic. Notwithstanding the great effort by the CICIDS2017
team to provide documentation on the infrastructure and data
collection, we observed a lack of documentation concerning
flow construction and parameters of attacks. Moreover, an
overly general labelling strategy without additional validation
of malicious traces caused a significant number of flows
to be mislabelled. We correct the CICFlowMeter tool, and
regenerate and relabel the new version of CICIDS2017 based
on the original traffic. Refined machine learning benchmarks
and feature importance analysis indicate improved validity and
utility of the dataset. Crucially, our preliminary investigation
into CSE-CIC-IDS2018, the successor of CICIDS2017, also
revealed errors in flow construction. We strongly recommend
to further analyze this dataset and only use the corrected
version of CICFlowMeter for flow-based analysis.

We introduced an “Attempted” label for each attack class in
order to decouple intent from effect. As this dichotomy applies
to many security datasets, future research should investigate
its other possible sources and devise appropriate practices.

Our analysis provides more insight into the process of
dataset creation, which not only allows one to make informed

decision when selecting data for lab evaluations, but also –
crucially – sets correct expectations and overall contributes
to designing better security solutions. We expect our findings
and recommendations to support researchers and practitioners
in the pursuit of better datasets and evaluation approaches.

VI. ACKNOWLEDGMENTS

We thank Jin Li for providing us with the labelling code.
We also thank Lieven Desmet for proofreading the paper and
for his helpful insights, and the reviewers for their valuable
suggestions. This research is funded by the Research Fund KU
Leuven and by the Flemish Research Programme Cybersecu-
rity.

REFERENCES

[1] H. Hindy, D. Brosset, E. Bayne, A. K. Seeam, C. Tachtatzis, R. Atkin-
son, and X. Bellekens, “A taxonomy of network threats and the effect
of current datasets on intrusion detection systems,” IEEE Access, vol. 8,
pp. 104 650–104 675, 2020.

[2] I. Sharafaldin, A. Gharib, A. H. Lashkari, and A. A. Ghorbani, “Towards
a reliable intrusion detection benchmark dataset,” Software Networking,
vol. 2018, no. 1, pp. 177–200, 2018.

[3] E. K. Viegas, A. O. Santin, and L. S. Oliveira, “Toward a reliable
anomaly-based intrusion detection in real-world environments,” Com-
puter Networks, vol. 127, pp. 200–216, 2017.

[4] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho, “A
survey of network-based intrusion detection data sets,” Computers &
Security, vol. 86, pp. 147–167, 2019.

[5] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.”
in ICISSP, 2018, pp. 108–116.

[6] L. Leichtnam, E. Totel, N. Prigent, and L. Mé, “Sec2graph: Network
attack detection based on novelty detection on graph structured data,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2020, pp. 238–258.

[7] A. Rosay, F. Carlier, and P. Leroux, “MLP4NIDS: An efficient MLP-
Based network intrusion detection for CICIDS2017 dataset,” in Inter-
national Conference on Machine Learning for Networking. Springer,
2019, pp. 240–254.

[8] D. Stiawan, M. Y. B. Idris, A. M. Bamhdi, R. Budiarto et al., “CICIDS-
2017 dataset feature analysis with information gain for anomaly detec-
tion,” IEEE Access, vol. 8, pp. 132 911–132 921, 2020.

[9] J. L. Leevy and T. M. Khoshgoftaar, “A survey and analysis of intrusion
detection models based on CSE-CIC-IDS2018 big data,” Journal of Big
Data, vol. 7, no. 1, pp. 1–19, 2020.

[10] “Extended documentation of the corrected CICFlowMeter, generated
CICIDS dataset, and the source code of the paper,” https://downloads.
distrinet-research.be/WTMC2021.

[11] A. Gharib, I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “An eval-
uation framework for intrusion detection dataset,” in 2016 International
Conference on Information Science and Security (ICISS). IEEE, 2016,
pp. 1–6.

[12] G. Apruzzese, M. Colajanni, and M. Marchetti, “Evaluating the effec-
tiveness of adversarial attacks against botnet detectors,” in 2019 IEEE
18th International Symposium on Network Computing and Applications
(NCA). IEEE, 2019, pp. 1–8.

[13] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “A detailed analysis
of the CICIDS2017 data set,” in International Conference on Informa-
tion Systems Security and Privacy. Springer, 2018, pp. 172–188.

[14] A. Abdullah Alfrhan, R. Hamad Alhusain, and R. Ulah Khan, “SMOTE:
Class imbalance problem in intrusion detection system,” in 2020 Inter-
national Conference on Computing and Information Technology (ICCIT-
1441), 2020, pp. 1–5.

[15] C. I. for Cybersecurity, “Intrusion detection evaluation dataset (CI-
CIDS2017),” https://www.unb.ca/cic/datasets/ids-2017.html, 2017, ac-
cessed: 2021-01-22.

[16] “CICFlowMeter tool,” https://www.unb.ca/cic/research/applications.
html, accessed: 2021-01-09.

[17] J. Postel et al., “RFC 793: Transmission control protocol specification,”
1981.


